home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
IRIX 6.2 Development Libraries
/
SGI IRIX 6.2 Development Libraries.iso
/
dist
/
complib.idb
/
usr
/
share
/
catman
/
p_man
/
cat3
/
complib
/
ssyevx.z
/
ssyevx
Wrap
Text File
|
1996-03-14
|
7KB
|
199 lines
SSSSSSSSYYYYEEEEVVVVXXXX((((3333FFFF)))) SSSSSSSSYYYYEEEEVVVVXXXX((((3333FFFF))))
NNNNAAAAMMMMEEEE
SSYEVX - compute selected eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A
SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
SUBROUTINE SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
CHARACTER JOBZ, RANGE, UPLO
INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
REAL ABSTOL, VL, VU
INTEGER IFAIL( * ), IWORK( * )
REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
PPPPUUUURRRRPPPPOOOOSSSSEEEE
SSYEVX computes selected eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired
eigenvalues.
AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
RANGE (input) CHARACTER*1
= 'A': all eigenvalues will be found.
= 'V': all eigenvalues in the half-open interval (VL,VU] will be
found. = 'I': the IL-th through IU-th eigenvalues will be found.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading N-
by-N upper triangular part of A contains the upper triangular
part of the matrix A. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of the
matrix A. On exit, the lower triangle (if UPLO='L') or the upper
triangle (if UPLO='U') of A, including the diagonal, is
destroyed.
PPPPaaaaggggeeee 1111
SSSSSSSSYYYYEEEEVVVVXXXX((((3333FFFF)))) SSSSSSSSYYYYEEEEVVVVXXXX((((3333FFFF))))
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
VL (input) REAL
VU (input) REAL If RANGE='V', the lower and upper bounds of
the interval to be searched for eigenvalues. VL < VU. Not
referenced if RANGE = 'A' or 'I'.
IL (input) INTEGER
IU (input) INTEGER If RANGE='I', the indices (in ascending
order) of the smallest and largest eigenvalues to be returned. 1
<= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not
referenced if RANGE = 'A' or 'V'.
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues. An approximate
eigenvalue is accepted as converged when it is determined to lie
in an interval [a,b] of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less than or
equal to zero, then EPS*|T| will be used in its place, where
|T| is the 1-norm of the tridiagonal matrix obtained by reducing
A to tridiagonal form.
Eigenvalues will be computed most accurately when ABSTOL is set
to twice the underflow threshold 2*SLAMCH('S'), not zero. If
this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices with
Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK
Working Note #3.
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N. If RANGE =
'A', M = N, and if RANGE = 'I', M = IU-IL+1.
W (output) REAL array, dimension (N)
On normal exit, the first M elements contain the selected
eigenvalues in ascending order.
Z (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z contain
the orthonormal eigenvectors of the matrix A corresponding to the
selected eigenvalues, with the i-th column of Z holding the
eigenvector associated with W(i). If an eigenvector fails to
converge, then that column of Z contains the latest approximation
to the eigenvector, and the index of the eigenvector is returned
in IFAIL. If JOBZ = 'N', then Z is not referenced. Note: the
PPPPaaaaggggeeee 2222
SSSSSSSSYYYYEEEEVVVVXXXX((((3333FFFF)))) SSSSSSSSYYYYEEEEVVVVXXXX((((3333FFFF))))
user must ensure that at least max(1,M) columns are supplied in
the array Z; if RANGE = 'V', the exact value of M is not known in
advance and an upper bound must be used.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if JOBZ =
'V', LDZ >= max(1,N).
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,8*N). For optimal
efficiency, LWORK >= (NB+3)*N, where NB is the blocksize for
SSYTRD returned by ILAENV.
IWORK (workspace) INTEGER array, dimension (5*N)
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL
are zero. If INFO > 0, then IFAIL contains the indices of the
eigenvectors that failed to converge. If JOBZ = 'N', then IFAIL
is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, then i eigenvectors failed to converge. Their
indices are stored in array IFAIL.
PPPPaaaaggggeeee 3333